دانلود جزوه و پاورپوینت و مقاله طرح درس

تحقیق تعاريف و ويژگي‌هاي بنيادي توابع مثلثاتي 27 ص

تحقیق تعاريف و ويژگي‌هاي بنيادي توابع مثلثاتي 27 ص

تحقیق-تعاريف-و-ويژگي‌هاي-بنيادي-توابع-مثلثاتي-27-صلینک دانلود و خرید پایین توضیحات
دسته بندی : وورد
نوع فایل :  word (..DOC) ( قابل ويرايش و آماده پرينت )
تعداد صفحه : 27 صفحه

 قسمتی از متن word (..DOC) : 
 

‏تعاريف‏ و ويژگي‌هاي بنيادي توابع مثلثاتي
‏اندازه‏ كمان بر حسب راديان، دايره مثلثاتي
‏دانش‏‌‏آموزان‏ ‏اولين‏ چيزي را كه در مطالعه توابع مثلثاتي بايد بخاطر داشته باشند اين است كه ‏شناسه‏‌‏هاي‏ (متغيرهاي) اين توابع عبارت از اعداد حقيقي هستند. بررسي عباراتي نظير sin1‏،‏ cos15‏،‏ (نه عبارات sin10‏،‏ cos150‏،‏) ، cos (sin1)‏ ‏گاهي‏ اوقات به نظر دانشجويان دوره‌هاي پيشدانگاهي مشكل مي‌رسد.
‏با‏ ‏ملاحظه‏ توابع كماني مفهوم تابع مثلثاتي نيز تعميم داده مي‌شود. در اين بررسي دانش‌آموزان ‏با‏ كماني‌هايي مواجه خواهند شد كه اندازه آن‌ها ممكن است بر حسب هر عددي از درجات ‏هم‏ منفي و هم مثبت بيان شود. مرحله اساسي بعدي عبارت از اين است كه اندازه درجه (اندازه شصت قسمتي) به اندازه راديان كه اندازه‌اي معمولي‌تر است تبديل مي‌شود. در ‏حقيقت‏ تقسيم يك دور دايره به 360 قسمت (درجه) يك روش سنتي است. اندازه زاويه‌ها ‏برحسب‏ راديان بر اندازه طول كمان‌هاي دايره وابسته است. در اينجا واحد اندازه‌گيري ‏يك‏ راديان است كه عبارت از اندازه يك زاويه مركزي است. اين زاويه به كماني نگاه مي‌كند ‏كه‏ طول آن برابر شعاع همان دايره است. بدين ترتيب اندازه يك زاويه بر حسب راديان ‏عبارت‏ از نسبت ط‏ول‏ كمان مقابل به زاويه بر شعاع دايره‌اي است كه زاويه مطروحه در ‏آن‏ يك زاويه مركزي است. اندازه زاويه برحسب راديان را اندازه دوار زاويه نيز مي‌گويند. ‏از‏ آنجا كه محيط دايره‌اي به شعاع واحد برابر ‏ ‏است‏ از اينرو طول كمان ‏ ‏برابر‏ ‏ ‏راديان‏ خواهد بود. در ‏نتيجه‏ ‏ ‏برابر‏ ‏ ‏راديان‏ خواهد شد.
‏مثال‏1-1-1- ‏كماني‏ به اندازه يك راديان برابر چند درجه است؟
‏جواب‏: ‏تناسب‏ زير را مي‌نويسيم:
‏اگر‏ ‏ ‏باشد‏ آنگاه ‏ ‏يا‏ ‏ ‏را‏ خواهيم داشت.
‏مثال‏ 2-1-1 كماني به اندازه ‏ ‏راديان‏ برابر چند درجه ‏است؟
‏حل‏: اگر ‏ ‏و‏ ‏ ‏باشد‏ آنگاه
‏2- دايره ‏مثلثاتي‏.‏ ‏در‏ ملاحظه اندازه يك كمان چه بر حسب درجه و چه برحسب ‏راديان‏ آگاهي از جهت مسير كمان از نقطه مبدا A1‏ ‏به‏ نقطه A2‏ ‏حائز‏ اهميت است. مسير كمان از ‏نقطه‏ مبدأ به نقطه مقصد در جهت خلاف حركت عقربه‌هاي ساعت معمولاً مثبت در نظر ‏گرفته‏ مي‌شود. در حاليكه در ‏جهت‏ حركت عقربه‌هاي ساعت منفي منظور مي‌شود.
‏معمولاً‏ ‏انتهاي‏ سمت راست قطر افقي دايره مثلثاتي به عنوان نقطه مبدأ اختيار مي‌شود. نقطه ‏مبدأ‏ دايره داراي مختصات (1,0)‏ ‏خواهد‏ بود. آن را بصورت A=A(1,0)‏ ‏نشان‏ مي‌دهيم. همچنين نقاط D,C,B‏ ‏از‏ ‏اين‏ دايره را بترتيب با مختصات B=(0,1)‏،‏ C=(-1,0)‏،‏ D=(0,-1)‏ ‏داريم‏.
‏دايره‏ ‏مثلثاتي‏ را با S‏ ‏نشان‏ مي‌دهيم. طبق آنچه كه ذكر شد چنين داريم:
‏ 3- پيچش محور حقيقي به دور دايره مثلثاتي. ‏در‏ ‏تئوري‏ توابع مثلثاتي نگاشت ‏ ‏از‏ R‏ ‏مجموعه‏ ‏اعداد‏ حقيقي روي دايره مثلثاتي كه با شرايط زير انجام مي‌شود نقش اساسي را ايفا مي‌كند:
‏عدد‏ t=0‏ ‏روي‏ محور اعداد حقيقي با نقطه ‏: A‏ ‏همراه‏ مي‌شود.
‏اگر‏ ‏ ‏باشد‏ آنگاه در دايره ‏مثلثاتي‏ نقطه ‏ ‏را‏ به عنوان نقطه مبدا ‏كمان‏ AP1‏ ‏در‏ نظر گرفته و بر محيط دايره ‏مسيري‏ به طول T‏ ‏را‏ در جهت مثبت اختيار مي‌كنيم، نقطه مقصد اين مسير را با Pt‏ ‏نشان‏ ‏داده‏ و عدد t‏ ‏را‏ با نقطه Pt‏ ‏روي‏ دايره مثلثاتي همراه مي‌كنيم. ‏يا‏ به عبارت ديگر نقطه Pt‏ ‏تصوير‏ نقطه A=P0‏ ‏خواهد‏ بود وقتي كه صفحه مختصاتي ‏حول‏ مبدا مختصاتي به اندازه t‏ ‏راديان‏ چرخانده شود.
‏اگر‏ ‏ ‏باشد‏ آنگاه با شروع از ‏نقطه‏ A‏ ‏بر‏ محيط دايره در جهت منفي، مسيري به طول ‏ ‏را‏ مشخص مي‌كنيم. فرض ‏كنيد‏ كه Pt‏ ‏نقطه‏ مقصد اين مسير را نشان دهد و نقطه‌اي متناظر به عدد منفي t‏ ‏باشد‏.
‏همانطوريكه‏ ‏ملاحظه‏ شد جوهره نگاشت ‏: P‏ ‏اين‏ نكته را مي‌رساند كه نيم‌محور مثبت اعداد حقيقي در جهت مثبت ‏بر‏ روي S‏ ‏مي‏‌‏خوابد؛‏ در حاليكه نيم‌محور منفي اعداد حقيقي در جهت منفي بر ‏روي‏ S‏ ‏مي‏‌‏خوابد‏. اين نگاشت بك‌بيك نيست: اگر ‏ ‏به‏ عدد ‏ ‏متناظر‏ باشد يعني اگر F=P‏ ‏باشد‏ آنگاه ‏اين‏ نقطه نيز به اعداد ‏ ‏متناظر‏ خواهد بود:
‏در‏ ‏حقيقت‏ با افزودن مسيري با طول ‏ (در جهت مثبت و يا در ‏جهت‏ منفي) به مسيري به طول t‏ ‏مجدداً‏ به نقطه
F‏ ‏خواهيم‏ رسيد. نگاره وارون كامل P-1(Pt)‏ ‏نقطه‏ Pt‏ ‏با‏ ‏مجموعه‏ ‏ ‏تطابق‏ دارد.
‏توجه‏: ‏عدد‏ t‏ ‏معمولاً‏ با نقطه pt‏ ‏كه‏ متناظر به اين عدد است يكي ‏در‏ نظر گرفته مي‌شود، با اين حال مسائل بايد به موضوع مطروحه نيز توجه كرد.
‏مثال‏4-1-1- ‏همه‏ اعداد ‏ ‏را‏ كه متناظر به نقطه ‏ ‏با‏ مختصات ‏ ‏است‏ تحت نگاشت P‏ ‏بدست‏ آوريد.
‏حل‏: ‏بدليل‏ رابطه زير نقطه F‏ ‏عملا‏ روي S‏ ‏قرار‏ دارد:
‏فرض‏ ‏مي‏‌‏كنيم‏ كه Y,X‏ ‏پاي‏ عمودهاي مرسوم از نقطه F‏ ‏بر‏ روي محورهاي مختصاتي OX‏ ‏و‏ OY‏ ‏باشند‏ (شكل 3). آنگاه ‏ ‏بوده‏ و XFO‏ ‏مثلث‏ ‏متساوي‏‌‌‏الساقين‏ قائم‌الزاويه خواهد بود: ‏ ‏بدين‏ ترتيب اندازه كمان AF‏ ‏برابر‏ ‏ ‏بوده‏ و به نقطه F‏ ‏فقط‏ اعداد ‏ ‏متناظر‏ مي‌شود.
‏يك‏ ‏تابع‏ متناوب داراي دورهاي تناوب نامتناهي است؛ به اينصورت كه بر اساس دوره تناوب T‏ ‏و‏ به ازاء ‏هر‏ عددي بصورت ‏ ‏كه‏ در آن ‏ ‏به‏ صورت يك عدد صحيح ‏است‏ تابع داراي يك دوره تناوب مي‌شود. كوچكترين ‏دوره تناوب مثبت يك تابع متناوب را دوره تناوب بنيادي مي‏‌‏نامند.
‏قضيه1-1. توابع ‏ و ‏ با دوره تناوب بنيادي ‏ متناوب هستند.
‏قضيه 2-1. توابع ‏ و ‏ با دوره‏‌‏ تناوب بنيادي ‏ متناوب هستند.

 

دانلود فایل

برچسب ها: تحقیق تعاريف و ويژگي‌هاي بنيادي توابع مثلثاتي 27 ص , تعاريف و ويژگي‌هاي بنيادي توابع مثلثاتي 27 ص , دانلود تحقیق تعاريف و ويژگي‌هاي بنيادي توابع مثلثاتي 27 ص , تعاريف , و , ويژگي‌هاي , بنيادي , توابع , مثلثاتي , 27 , ص , تحقیق ,

[ بازدید : 11 ]

[ سه شنبه 25 مرداد 1401 ] 18:26 ] [ دیجیتال مارکتر | غلام سئو ]

[ ]

ساخت وبلاگ
بستن تبلیغات [x]